switching from breezefield to windfield because of the documentation

This commit is contained in:
2021-05-08 11:58:32 +02:00
parent e5f96e9320
commit 48d937f3e5
9 changed files with 3556 additions and 362 deletions

929
deps/windfield/init.lua vendored Normal file
View File

@@ -0,0 +1,929 @@
--[[
The MIT License (MIT)
Copyright (c) 2018 SSYGEN
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
]]--
local path = ... .. '.'
local wf = {}
wf.Math = require(path .. 'mlib.mlib')
World = {}
World.__index = World
function wf.newWorld(xg, yg, sleep)
local world = wf.World.new(wf, xg, yg, sleep)
world.box2d_world:setCallbacks(world.collisionOnEnter, world.collisionOnExit, world.collisionPre, world.collisionPost)
world:collisionClear()
world:addCollisionClass('Default')
-- Points all box2d_world functions to this wf.World object
-- This means that the user can call world:setGravity for instance without having to say world.box2d_world:setGravity
for k, v in pairs(world.box2d_world.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'update' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
world[k] = function(self, ...)
return v(self.box2d_world, ...)
end
end
end
return world
end
function World.new(wf, xg, yg, sleep)
local self = {}
local settings = settings or {}
self.wf = wf
self.draw_query_for_n_frames = 10
self.query_debug_drawing_enabled = false
self.explicit_collision_events = false
self.collision_classes = {}
self.masks = {}
self.is_sensor_memo = {}
self.query_debug_draw = {}
love.physics.setMeter(32)
self.box2d_world = love.physics.newWorld(xg, yg, sleep)
return setmetatable(self, World)
end
function World:update(dt)
self:collisionEventsClear()
self.box2d_world:update(dt)
end
function World:draw(alpha)
-- get the current color values to reapply
local r, g, b, a = love.graphics.getColor()
-- alpha value is optional
alpha = alpha or 255
-- Colliders debug
love.graphics.setColor(222, 222, 222, alpha)
local bodies = self.box2d_world:getBodies()
for _, body in ipairs(bodies) do
local fixtures = body:getFixtures()
for _, fixture in ipairs(fixtures) do
if fixture:getShape():type() == 'PolygonShape' then
love.graphics.polygon('line', body:getWorldPoints(fixture:getShape():getPoints()))
elseif fixture:getShape():type() == 'EdgeShape' or fixture:getShape():type() == 'ChainShape' then
local points = {body:getWorldPoints(fixture:getShape():getPoints())}
for i = 1, #points, 2 do
if i < #points-2 then love.graphics.line(points[i], points[i+1], points[i+2], points[i+3]) end
end
elseif fixture:getShape():type() == 'CircleShape' then
local body_x, body_y = body:getPosition()
local shape_x, shape_y = fixture:getShape():getPoint()
local r = fixture:getShape():getRadius()
love.graphics.circle('line', body_x + shape_x, body_y + shape_y, r, 360)
end
end
end
love.graphics.setColor(255, 255, 255, alpha)
-- Joint debug
love.graphics.setColor(222, 128, 64, alpha)
local joints = self.box2d_world:getJoints()
for _, joint in ipairs(joints) do
local x1, y1, x2, y2 = joint:getAnchors()
if x1 and y1 then love.graphics.circle('line', x1, y1, 4) end
if x2 and y2 then love.graphics.circle('line', x2, y2, 4) end
end
love.graphics.setColor(255, 255, 255, alpha)
-- Query debug
love.graphics.setColor(64, 64, 222, alpha)
for _, query_draw in ipairs(self.query_debug_draw) do
query_draw.frames = query_draw.frames - 1
if query_draw.type == 'circle' then
love.graphics.circle('line', query_draw.x, query_draw.y, query_draw.r)
elseif query_draw.type == 'rectangle' then
love.graphics.rectangle('line', query_draw.x, query_draw.y, query_draw.w, query_draw.h)
elseif query_draw.type == 'line' then
love.graphics.line(query_draw.x1, query_draw.y1, query_draw.x2, query_draw.y2)
elseif query_draw.type == 'polygon' then
local triangles = love.math.triangulate(query_draw.vertices)
for _, triangle in ipairs(triangles) do love.graphics.polygon('line', triangle) end
end
end
for i = #self.query_debug_draw, 1, -1 do
if self.query_debug_draw[i].frames <= 0 then
table.remove(self.query_debug_draw, i)
end
end
love.graphics.setColor(r, g, b, a)
end
function World:setQueryDebugDrawing(value)
self.query_debug_drawing_enabled = value
end
function World:setExplicitCollisionEvents(value)
self.explicit_collision_events = value
end
function World:addCollisionClass(collision_class_name, collision_class)
if self.collision_classes[collision_class_name] then error('Collision class ' .. collision_class_name .. ' already exists.') end
if self.explicit_collision_events then
self.collision_classes[collision_class_name] = collision_class or {}
else
self.collision_classes[collision_class_name] = collision_class or {}
self.collision_classes[collision_class_name].enter = {}
self.collision_classes[collision_class_name].exit = {}
self.collision_classes[collision_class_name].pre = {}
self.collision_classes[collision_class_name].post = {}
for c_class_name, _ in pairs(self.collision_classes) do
table.insert(self.collision_classes[collision_class_name].enter, c_class_name)
table.insert(self.collision_classes[collision_class_name].exit, c_class_name)
table.insert(self.collision_classes[collision_class_name].pre, c_class_name)
table.insert(self.collision_classes[collision_class_name].post, c_class_name)
end
for c_class_name, _ in pairs(self.collision_classes) do
table.insert(self.collision_classes[c_class_name].enter, collision_class_name)
table.insert(self.collision_classes[c_class_name].exit, collision_class_name)
table.insert(self.collision_classes[c_class_name].pre, collision_class_name)
table.insert(self.collision_classes[c_class_name].post, collision_class_name)
end
end
self:collisionClassesSet()
end
function World:collisionClassesSet()
self:generateCategoriesMasks()
self:collisionClear()
local collision_table = self:getCollisionCallbacksTable()
for collision_class_name, collision_list in pairs(collision_table) do
for _, collision_info in ipairs(collision_list) do
if collision_info.type == 'enter' then self:addCollisionEnter(collision_class_name, collision_info.other) end
if collision_info.type == 'exit' then self:addCollisionExit(collision_class_name, collision_info.other) end
if collision_info.type == 'pre' then self:addCollisionPre(collision_class_name, collision_info.other) end
if collision_info.type == 'post' then self:addCollisionPost(collision_class_name, collision_info.other) end
end
end
self:collisionEventsClear()
end
function World:collisionClear()
self.collisions = {}
self.collisions.on_enter = {}
self.collisions.on_enter.sensor = {}
self.collisions.on_enter.non_sensor = {}
self.collisions.on_exit = {}
self.collisions.on_exit.sensor = {}
self.collisions.on_exit.non_sensor = {}
self.collisions.pre = {}
self.collisions.pre.sensor = {}
self.collisions.pre.non_sensor = {}
self.collisions.post = {}
self.collisions.post.sensor = {}
self.collisions.post.non_sensor = {}
end
function World:collisionEventsClear()
local bodies = self.box2d_world:getBodies()
for _, body in ipairs(bodies) do
local collider = body:getFixtures()[1]:getUserData()
collider:collisionEventsClear()
end
end
function World:addCollisionEnter(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.on_enter.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.on_enter.sensor, {type1 = type1, type2 = type2}) end
end
function World:addCollisionExit(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.on_exit.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.on_exit.sensor, {type1 = type1, type2 = type2}) end
end
function World:addCollisionPre(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.pre.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.pre.sensor, {type1 = type1, type2 = type2}) end
end
function World:addCollisionPost(type1, type2)
if not self:isCollisionBetweenSensors(type1, type2) then
table.insert(self.collisions.post.non_sensor, {type1 = type1, type2 = type2})
else table.insert(self.collisions.post.sensor, {type1 = type1, type2 = type2}) end
end
function World:doesType1IgnoreType2(type1, type2)
local collision_ignores = {}
for collision_class_name, collision_class in pairs(self.collision_classes) do
collision_ignores[collision_class_name] = collision_class.ignores or {}
end
local all = {}
for collision_class_name, _ in pairs(collision_ignores) do
table.insert(all, collision_class_name)
end
local ignored_types = {}
for _, collision_class_type in ipairs(collision_ignores[type1]) do
if collision_class_type == 'All' then
for _, collision_class_name in ipairs(all) do
table.insert(ignored_types, collision_class_name)
end
else table.insert(ignored_types, collision_class_type) end
end
for key, _ in pairs(collision_ignores[type1]) do
if key == 'except' then
for _, except_type in ipairs(collision_ignores[type1].except) do
for i = #ignored_types, 1, -1 do
if ignored_types[i] == except_type then table.remove(ignored_types, i) end
end
end
end
end
for _, ignored_type in ipairs(ignored_types) do
if ignored_type == type2 then return true end
end
end
function World:isCollisionBetweenSensors(type1, type2)
if not self.is_sensor_memo[type1] then self.is_sensor_memo[type1] = {} end
if not self.is_sensor_memo[type1][type2] then self.is_sensor_memo[type1][type2] = (self:doesType1IgnoreType2(type1, type2) or self:doesType1IgnoreType2(type2, type1)) end
if self.is_sensor_memo[type1][type2] then return true
else return false end
end
-- https://love2d.org/forums/viewtopic.php?f=4&t=75441
function World:generateCategoriesMasks()
local collision_ignores = {}
for collision_class_name, collision_class in pairs(self.collision_classes) do
collision_ignores[collision_class_name] = collision_class.ignores or {}
end
local incoming = {}
local expanded = {}
local all = {}
for object_type, _ in pairs(collision_ignores) do
incoming[object_type] = {}
expanded[object_type] = {}
table.insert(all, object_type)
end
for object_type, ignore_list in pairs(collision_ignores) do
for key, ignored_type in pairs(ignore_list) do
if ignored_type == 'All' then
for _, all_object_type in ipairs(all) do
table.insert(incoming[all_object_type], object_type)
table.insert(expanded[object_type], all_object_type)
end
elseif type(ignored_type) == 'string' then
if ignored_type ~= 'All' then
table.insert(incoming[ignored_type], object_type)
table.insert(expanded[object_type], ignored_type)
end
end
if key == 'except' then
for _, except_ignored_type in ipairs(ignored_type) do
for i, v in ipairs(incoming[except_ignored_type]) do
if v == object_type then
table.remove(incoming[except_ignored_type], i)
break
end
end
end
for _, except_ignored_type in ipairs(ignored_type) do
for i, v in ipairs(expanded[object_type]) do
if v == except_ignored_type then
table.remove(expanded[object_type], i)
break
end
end
end
end
end
end
local edge_groups = {}
for k, v in pairs(incoming) do
table.sort(v, function(a, b) return string.lower(a) < string.lower(b) end)
end
local i = 0
for k, v in pairs(incoming) do
local str = ""
for _, c in ipairs(v) do
str = str .. c
end
if not edge_groups[str] then i = i + 1; edge_groups[str] = {n = i} end
table.insert(edge_groups[str], k)
end
local categories = {}
for k, _ in pairs(collision_ignores) do
categories[k] = {}
end
for k, v in pairs(edge_groups) do
for i, c in ipairs(v) do
categories[c] = v.n
end
end
for k, v in pairs(expanded) do
local category = {categories[k]}
local current_masks = {}
for _, c in ipairs(v) do
table.insert(current_masks, categories[c])
end
self.masks[k] = {categories = category, masks = current_masks}
end
end
function World:getCollisionCallbacksTable()
local collision_table = {}
for collision_class_name, collision_class in pairs(self.collision_classes) do
collision_table[collision_class_name] = {}
for _, v in ipairs(collision_class.enter or {}) do table.insert(collision_table[collision_class_name], {type = 'enter', other = v}) end
for _, v in ipairs(collision_class.exit or {}) do table.insert(collision_table[collision_class_name], {type = 'exit', other = v}) end
for _, v in ipairs(collision_class.pre or {}) do table.insert(collision_table[collision_class_name], {type = 'pre', other = v}) end
for _, v in ipairs(collision_class.post or {}) do table.insert(collision_table[collision_class_name], {type = 'post', other = v}) end
end
return collision_table
end
local function collEnsure(collision_class_name1, a, collision_class_name2, b)
if a.collision_class == collision_class_name2 and b.collision_class == collision_class_name1 then return b, a
else return a, b end
end
local function collIf(collision_class_name1, collision_class_name2, a, b)
if (a.collision_class == collision_class_name1 and b.collision_class == collision_class_name2) or
(a.collision_class == collision_class_name2 and b.collision_class == collision_class_name1) then
return true
else return false end
end
function World.collisionOnEnter(fixture_a, fixture_b, contact)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.on_enter.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'enter', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'enter', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.on_enter.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'enter', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'enter', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
end
end
function World.collisionOnExit(fixture_a, fixture_b, contact)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.on_exit.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'exit', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'exit', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.on_exit.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
table.insert(a.collision_events[collision.type2], {collision_type = 'exit', collider_1 = a, collider_2 = b, contact = contact})
if collision.type1 == collision.type2 then
table.insert(b.collision_events[collision.type1], {collision_type = 'exit', collider_1 = b, collider_2 = a, contact = contact})
end
end
end
end
end
end
function World.collisionPre(fixture_a, fixture_b, contact)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.pre.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:preSolve(b, contact)
if collision.type1 == collision.type2 then
b:preSolve(a, contact)
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.pre.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:preSolve(b, contact)
if collision.type1 == collision.type2 then
b:preSolve(a, contact)
end
end
end
end
end
end
function World.collisionPost(fixture_a, fixture_b, contact, ni1, ti1, ni2, ti2)
local a, b = fixture_a:getUserData(), fixture_b:getUserData()
if fixture_a:isSensor() and fixture_b:isSensor() then
if a and b then
for _, collision in ipairs(a.world.collisions.post.sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:postSolve(b, contact, ni1, ti1, ni2, ti2)
if collision.type1 == collision.type2 then
b:postSolve(a, contact, ni1, ti1, ni2, ti2)
end
end
end
end
elseif not (fixture_a:isSensor() or fixture_b:isSensor()) then
if a and b then
for _, collision in ipairs(a.world.collisions.post.non_sensor) do
if collIf(collision.type1, collision.type2, a, b) then
a, b = collEnsure(collision.type1, a, collision.type2, b)
a:postSolve(b, contact, ni1, ti1, ni2, ti2)
if collision.type1 == collision.type2 then
b:postSolve(a, contact, ni1, ti1, ni2, ti2)
end
end
end
end
end
end
function World:newCircleCollider(x, y, r, settings)
return self.wf.Collider.new(self, 'Circle', x, y, r, settings)
end
function World:newRectangleCollider(x, y, w, h, settings)
return self.wf.Collider.new(self, 'Rectangle', x, y, w, h, settings)
end
function World:newBSGRectangleCollider(x, y, w, h, corner_cut_size, settings)
return self.wf.Collider.new(self, 'BSGRectangle', x, y, w, h, corner_cut_size, settings)
end
function World:newPolygonCollider(vertices, settings)
return self.wf.Collider.new(self, 'Polygon', vertices, settings)
end
function World:newLineCollider(x1, y1, x2, y2, settings)
return self.wf.Collider.new(self, 'Line', x1, y1, x2, y2, settings)
end
function World:newChainCollider(vertices, loop, settings)
return self.wf.Collider.new(self, 'Chain', vertices, loop, settings)
end
-- Internal AABB box2d query used before going for more specific and precise computations.
function World:_queryBoundingBox(x1, y1, x2, y2)
local colliders = {}
local callback = function(fixture)
if not fixture:isSensor() then table.insert(colliders, fixture:getUserData()) end
return true
end
self.box2d_world:queryBoundingBox(x1, y1, x2, y2, callback)
return colliders
end
function World:collisionClassInCollisionClassesList(collision_class, collision_classes)
if collision_classes[1] == 'All' then
local all_collision_classes = {}
for class, _ in pairs(self.collision_classes) do
table.insert(all_collision_classes, class)
end
if collision_classes.except then
for _, except in ipairs(collision_classes.except) do
for i, class in ipairs(all_collision_classes) do
if class == except then
table.remove(all_collision_classes, i)
break
end
end
end
end
for _, class in ipairs(all_collision_classes) do
if class == collision_class then return true end
end
else
for _, class in ipairs(collision_classes) do
if class == collision_class then return true end
end
end
end
function World:queryCircleArea(x, y, radius, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then table.insert(self.query_debug_draw, {type = 'circle', x = x, y = y, r = radius, frames = self.draw_query_for_n_frames}) end
local colliders = self:_queryBoundingBox(x-radius, y-radius, x+radius, y+radius)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
for _, fixture in ipairs(collider.body:getFixtures()) do
if self.wf.Math.polygon.getCircleIntersection(x, y, radius, {collider.body:getWorldPoints(fixture:getShape():getPoints())}) then
table.insert(outs, collider)
break
end
end
end
end
return outs
end
function World:queryRectangleArea(x, y, w, h, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then table.insert(self.query_debug_draw, {type = 'rectangle', x = x, y = y, w = w, h = h, frames = self.draw_query_for_n_frames}) end
local colliders = self:_queryBoundingBox(x, y, x+w, y+h)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
for _, fixture in ipairs(collider.body:getFixtures()) do
if self.wf.Math.polygon.isPolygonInside({x, y, x+w, y, x+w, y+h, x, y+h}, {collider.body:getWorldPoints(fixture:getShape():getPoints())}) then
table.insert(outs, collider)
break
end
end
end
end
return outs
end
function World:queryPolygonArea(vertices, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then table.insert(self.query_debug_draw, {type = 'polygon', vertices = vertices, frames = self.draw_query_for_n_frames}) end
local cx, cy = self.wf.Math.polygon.getCentroid(vertices)
local d_max = 0
for i = 1, #vertices, 2 do
local d = self.wf.Math.line.getLength(cx, cy, vertices[i], vertices[i+1])
if d > d_max then d_max = d end
end
local colliders = self:_queryBoundingBox(cx-d_max, cy-d_max, cx+d_max, cy+d_max)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
for _, fixture in ipairs(collider.body:getFixtures()) do
if self.wf.Math.polygon.isPolygonInside(vertices, {collider.body:getWorldPoints(fixture:getShape():getPoints())}) then
table.insert(outs, collider)
break
end
end
end
end
return outs
end
function World:queryLine(x1, y1, x2, y2, collision_class_names)
if not collision_class_names then collision_class_names = {'All'} end
if self.query_debug_drawing_enabled then
table.insert(self.query_debug_draw, {type = 'line', x1 = x1, y1 = y1, x2 = x2, y2 = y2, frames = self.draw_query_for_n_frames})
end
local colliders = {}
local callback = function(fixture, ...)
if not fixture:isSensor() then table.insert(colliders, fixture:getUserData()) end
return 1
end
self.box2d_world:rayCast(x1, y1, x2, y2, callback)
local outs = {}
for _, collider in ipairs(colliders) do
if self:collisionClassInCollisionClassesList(collider.collision_class, collision_class_names) then
table.insert(outs, collider)
end
end
return outs
end
function World:addJoint(joint_type, ...)
local args = {...}
if args[1].body then args[1] = args[1].body end
if type(args[2]) == "table" and args[2].body then args[2] = args[2].body end
local joint = love.physics['new' .. joint_type](unpack(args))
return joint
end
function World:removeJoint(joint)
joint:destroy()
end
function World:destroy()
local bodies = self.box2d_world:getBodies()
for _, body in ipairs(bodies) do
local collider = body:getFixtures()[1]:getUserData()
collider:destroy()
end
local joints = self.box2d_world:getJoints()
for _, joint in ipairs(joints) do joint:destroy() end
self.box2d_world:destroy()
self.box2d_world = nil
end
local Collider = {}
Collider.__index = Collider
local generator = love.math.newRandomGenerator(os.time())
local function UUID()
local fn = function(x)
local r = generator:random(16) - 1
r = (x == "x") and (r + 1) or (r % 4) + 9
return ("0123456789abcdef"):sub(r, r)
end
return (("xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx"):gsub("[xy]", fn))
end
function Collider.new(world, collider_type, ...)
local self = {}
self.id = UUID()
self.world = world
self.type = collider_type
self.object = nil
self.shapes = {}
self.fixtures = {}
self.sensors = {}
self.collision_events = {}
self.collision_stay = {}
self.enter_collision_data = {}
self.exit_collision_data = {}
self.stay_collision_data = {}
local args = {...}
local shape, fixture
if self.type == 'Circle' then
self.collision_class = (args[4] and args[4].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, args[1], args[2], (args[4] and args[4].body_type) or 'dynamic')
shape = love.physics.newCircleShape(args[3])
elseif self.type == 'Rectangle' then
self.collision_class = (args[5] and args[5].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, args[1] + args[3]/2, args[2] + args[4]/2, (args[5] and args[5].body_type) or 'dynamic')
shape = love.physics.newRectangleShape(args[3], args[4])
elseif self.type == 'BSGRectangle' then
self.collision_class = (args[6] and args[6].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, args[1] + args[3]/2, args[2] + args[4]/2, (args[6] and args[6].body_type) or 'dynamic')
local w, h, s = args[3], args[4], args[5]
shape = love.physics.newPolygonShape({
-w/2, -h/2 + s, -w/2 + s, -h/2,
w/2 - s, -h/2, w/2, -h/2 + s,
w/2, h/2 - s, w/2 - s, h/2,
-w/2 + s, h/2, -w/2, h/2 - s
})
elseif self.type == 'Polygon' then
self.collision_class = (args[2] and args[2].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, 0, 0, (args[2] and args[2].body_type) or 'dynamic')
shape = love.physics.newPolygonShape(unpack(args[1]))
elseif self.type == 'Line' then
self.collision_class = (args[5] and args[5].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, 0, 0, (args[5] and args[5].body_type) or 'dynamic')
shape = love.physics.newEdgeShape(args[1], args[2], args[3], args[4])
elseif self.type == 'Chain' then
self.collision_class = (args[3] and args[3].collision_class) or 'Default'
self.body = love.physics.newBody(self.world.box2d_world, 0, 0, (args[3] and args[3].body_type) or 'dynamic')
shape = love.physics.newChainShape(args[1], unpack(args[2]))
end
-- Define collision classes and attach them to fixture and sensor
fixture = love.physics.newFixture(self.body, shape)
if self.world.masks[self.collision_class] then
fixture:setCategory(unpack(self.world.masks[self.collision_class].categories))
fixture:setMask(unpack(self.world.masks[self.collision_class].masks))
end
fixture:setUserData(self)
local sensor = love.physics.newFixture(self.body, shape)
sensor:setSensor(true)
sensor:setUserData(self)
self.shapes['main'] = shape
self.fixtures['main'] = fixture
self.sensors['main'] = sensor
self.shape = shape
self.fixture = fixture
self.preSolve = function() end
self.postSolve = function() end
-- Points all body, fixture and shape functions to this wf.Collider object
-- This means that the user can call collider:setLinearVelocity for instance without having to say collider.body:setLinearVelocity
for k, v in pairs(self.body.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
self[k] = function(self, ...)
return v(self.body, ...)
end
end
end
for k, v in pairs(self.fixture.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
self[k] = function(self, ...)
return v(self.fixture, ...)
end
end
end
for k, v in pairs(self.shape.__index) do
if k ~= '__gc' and k ~= '__eq' and k ~= '__index' and k ~= '__tostring' and k ~= 'destroy' and k ~= 'type' and k ~= 'typeOf' then
self[k] = function(self, ...)
return v(self.shape, ...)
end
end
end
return setmetatable(self, Collider)
end
function Collider:collisionEventsClear()
self.collision_events = {}
for other, _ in pairs(self.world.collision_classes) do
self.collision_events[other] = {}
end
end
function Collider:setCollisionClass(collision_class_name)
if not self.world.collision_classes[collision_class_name] then error("Collision class " .. collision_class_name .. " doesn't exist.") end
self.collision_class = collision_class_name
for _, fixture in pairs(self.fixtures) do
if self.world.masks[collision_class_name] then
fixture:setCategory(unpack(self.world.masks[collision_class_name].categories))
fixture:setMask(unpack(self.world.masks[collision_class_name].masks))
end
end
end
function Collider:enter(other_collision_class_name)
local events = self.collision_events[other_collision_class_name]
if events and #events >= 1 then
for _, e in ipairs(events) do
if e.collision_type == 'enter' then
if not self.collision_stay[other_collision_class_name] then self.collision_stay[other_collision_class_name] = {} end
table.insert(self.collision_stay[other_collision_class_name], {collider = e.collider_2, contact = e.contact})
self.enter_collision_data[other_collision_class_name] = {collider = e.collider_2, contact = e.contact}
return true
end
end
end
end
function Collider:getEnterCollisionData(other_collision_class_name)
return self.enter_collision_data[other_collision_class_name]
end
function Collider:exit(other_collision_class_name)
local events = self.collision_events[other_collision_class_name]
if events and #events >= 1 then
for _, e in ipairs(events) do
if e.collision_type == 'exit' then
if self.collision_stay[other_collision_class_name] then
for i = #self.collision_stay[other_collision_class_name], 1, -1 do
local collision_stay = self.collision_stay[other_collision_class_name][i]
if collision_stay.collider.id == e.collider_2.id then table.remove(self.collision_stay[other_collision_class_name], i) end
end
end
self.exit_collision_data[other_collision_class_name] = {collider = e.collider_2, contact = e.contact}
return true
end
end
end
end
function Collider:getExitCollisionData(other_collision_class_name)
return self.exit_collision_data[other_collision_class_name]
end
function Collider:stay(other_collision_class_name)
if self.collision_stay[other_collision_class_name] then
if #self.collision_stay[other_collision_class_name] >= 1 then
return true
end
end
end
function Collider:getStayCollisionData(other_collision_class_name)
return self.collision_stay[other_collision_class_name]
end
function Collider:setPreSolve(callback)
self.preSolve = callback
end
function Collider:setPostSolve(callback)
self.postSolve = callback
end
function Collider:setObject(object)
self.object = object
end
function Collider:getObject()
return self.object
end
function Collider:addShape(shape_name, shape_type, ...)
if self.shapes[shape_name] or self.fixtures[shape_name] then error("Shape/fixture " .. shape_name .. " already exists.") end
local args = {...}
local shape = love.physics['new' .. shape_type](unpack(args))
local fixture = love.physics.newFixture(self.body, shape)
if self.world.masks[self.collision_class] then
fixture:setCategory(unpack(self.world.masks[self.collision_class].categories))
fixture:setMask(unpack(self.world.masks[self.collision_class].masks))
end
fixture:setUserData(self)
local sensor = love.physics.newFixture(self.body, shape)
sensor:setSensor(true)
sensor:setUserData(self)
self.shapes[shape_name] = shape
self.fixtures[shape_name] = fixture
self.sensors[shape_name] = sensor
end
function Collider:removeShape(shape_name)
if not self.shapes[shape_name] then return end
self.shapes[shape_name] = nil
self.fixtures[shape_name]:setUserData(nil)
self.fixtures[shape_name]:destroy()
self.fixtures[shape_name] = nil
self.sensors[shape_name]:setUserData(nil)
self.sensors[shape_name]:destroy()
self.sensors[shape_name] = nil
end
function Collider:destroy()
self.collision_stay = nil
self.enter_collision_data = nil
self.exit_collision_data = nil
self:collisionEventsClear()
self:setObject(nil)
for name, _ in pairs(self.fixtures) do
self.shapes[name] = nil
self.fixtures[name]:setUserData(nil)
self.fixtures[name] = nil
self.sensors[name]:setUserData(nil)
self.sensors[name] = nil
end
self.body:destroy()
self.body = nil
end
wf.World = World
wf.Collider = Collider
return wf

568
deps/windfield/mlib/Changes.txt vendored Normal file
View File

@@ -0,0 +1,568 @@
0.11.0
====
Added:
----
- mlib.vec2 component
To-Do:
----
- Update README.md
- Update spec.lua
- Fix tabbing
0.10.1
====
Added:
----
- Point category
- point.rotate
- point.scale
- point.polarToCartesian
- point.cartesianToPolar
Changed:
----
- math.getPercent now returns decimals (instead of percentages) since those are more common to use.
To-Do:
----
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Check argument order for logicality and consistency.
- Add error checking.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Clean up and correct README (add "Home" link, etc.)
0.10.0
====
Added:
----
Changed:
----
- mlib.line.segment is now mlib.segment.
- mlib.line.getIntercept has been renamed to mlib.line.getYIntercept
- mlib.line.getYIntercept now returns the x-coordinate for vertical lines instead of false.
- mlib.line.getYIntercept now returns the value `isVertical` as the second return value.
- mlib.line.getPerpendicularBisector is now mlib.segment.getPerpendicularBisector.
Fixed:
----
- mlib.line.getIntersection now should handle vertical slopes better.
- mlib.line.getClosestPoint now uses local function checkFuzzy for checking horizontal lines.
- Fixed possible bug in mlib.line.getSegmentIntersection and vertical lines.
- mlib.segment.getIntersection now uses fuzzy checking for parallel lines.
- mlib.math.round is now much more efficient.
- Removed some useless code from mlib.polygon.isSegmentInside.
To-Do:
----
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Check argument order for logicality and consistency.
- Improve speed.
- Add error checking.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Implement mlib.shapes again(?)
- Clean up and correct README (add "Home" link, etc.)
0.9.4
====
Added:
----
Changed:
----
- mlib.line.getDistance is now slightly faster.
- Made code much easier to debug by using new utility `cycle`.
- Added new utility.
- Various other minor changes.
Removed:
----
- Unused local utility function copy
To-Do
----
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Make argument order more logical.
- Improve speed and error checking.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Implement mlib.shapes again(?)
- Clean up README (add "Home" link, etc.)
0.9.3
====
Added:
----
- milb.circle.isCircleCompletelyInside
- mlib.circle.isPolygonCompletelyInside
- milb.circle.isSegmentCompletelyInside
- mlib.polygon.isCircleCompletelyInside
- mlib.polygon.isPolygonCompletelyInside
- mlib.polygon.isSegmentCompletelyInside
- ALIASES -
- mlib.circle.getPolygonIntersection
- mlib.circle.isCircleInsidePolygon
- mlib.circle.isCircleCompletelyInsidePolygon
- milb.line.getCircleIntersection
- milb.line.getPolygonIntersection
- milb.line.getLineIntersection
- mlib.line.segment.getCircleIntersection
- mlib.line.segment.getPolygonIntersection
- mlib.line.segment.getLineIntersection
- mlib.line.segment.getSegmentIntersection
- mlib.line.segment.isSegmentCompletelyInsideCircle
- mlib.line.segment.isSegmentCompletelyInsidePolygon
- mlib.polygon.isCircleCompletelyOver
Changed:
----
- mlib.circle.getCircleIntersection now returns 'inside' instead of 'intersection' if the point has not intersections but is within the circle.
- Fixed problem involving mlib.circle.getSegmentIntersection
- README.md now has more information on how to run specs and other minor improvements.
- Fixed some commenting on explanation of derivation of mlib.line.getIntersection.
- Updated the example to use the current version of mlib.
- Made/Changed some comments in the example main.lua.
Removed:
----
To-Do
----
- Make examples file on github (examples/shapes/main.lua, etc.) not just one line.
- Determine if isCompletelyInsideFunctions should return true with tangents.
- Make argument order more logical.
- Make sure to see if any aliases were missed. (e.g. isSegmentInside)
- Update spec links in README
0.9.2
====
Added:
----
Changed:
----
- mlib.polygon.getPolygonIntersection now does not create duplicate local table.
- mlib.line.getPerpendicularSlope now does not create a global variable.
- mlib.math.getSummation now allows the error to go through instead of returning false if the stop value is not a number.
- Changed any instance of the term "userdata" with "input"
Removed:
----
0.9.1
====
Added:
----
- Added mlib.statistics.getCentralTendency
- Added mlib.statistics.getDispersion
- Added mlib.statistics.getStandardDeviation
- Added mlib.statistics.getVariation
- Added mlib.statistics.getVariationRatio
Removed:
----
Changed:
----
- FIX: mlib.polygon.checkPoint now handles vertices better.
To-Do
----
- Add more functions.
0.9.0
====
Added:
----
- mlib.line.getDistance as an alias for mlib.line.getLength.
- mlib.line.checkPoint
- Internal documentation.
Removed:
----
- mlib.circle.isPointInCircle is replaced with mlib.circle.checkPoint
- mlib.circle.checkPoint is replaced with mlib.circle.isPointOnCircle
- Variation of mlib.circle.getLineIntersection( cx, cy, radius, slope, intercept ) is no longer supported, as it can cause errors with vertical lines.
Changed:
----
- CHANGE: mlib.line.getIntersection now returns true for colinear lines.
- CHANGE: mlib.line.getIntersection now returns true if the line are collinear.
- CHANGE: mlib.line.getIntersection now returns true if vertical lines are collinear.
- CHANGE: mlib.line.getSegmentIntersection now returns true if the line and segment are collinear.
- CHANGE: Changed the order of mlib.line.segment.checkPoint arguments.
- NAME: mlib.polygon.lineIntersects is now mlib.polygon.getLineIntersection
- NAME: mlib.polygon.lineSegmentIntersects is now mlib.polygon.getSegmentIntersection
- NAME: mlib.polygon.isLineSegmentInside is now mlib.polygon.isSegmentInside
- NAME: mlib.polygon.polygonIntersects is now mlib.polygon.getPolygonIntersection
- CHANGED: mlib.circle.checkPoint now takes arguments ( px, py, cx, cy, radius ).
- CHANGED: mlib.circle.isPointOnCircle now takes arguments ( px, py, cx, cy, radius ).
- NAME: mlib.polygon.circleIntersects is now mlib.polygon.getCircleIntersection
- NAME: mlib.circle.isLineSecant is now mlib.circle.getLineIntersection
- NAME: mlib.circle.isSegmentSecant is now mlib.circle.getSegmentIntersection
- NAME: mlib.circle.circlesIntersects is now mlib.circle.getCircleIntersection
- CHANGE: Added types 'tangent' and 'intersection' to mlib.circle.getCircleIntersection.
- NAME: mlib.math.getRootsOfQuadratic is now mlib.math.getQuadraticRoots
- CHANGE: mlib.math.getRoot now only returns the positive, since it there is not always negatives.
- NAME: mlib.math.getPercent is now mlib.math.getPercentage
- Cleaned up code (added comments, spaced lines, etc.)
- Made syntax that uses camelCase instead of CamelCase.
- Match style of more programmers.
- Easier to type.
- Moved to semantic numbering.
- Made any returns strings lower-case.
- Updated specs for missing functions.
To-Do
----
- Update readme.
- Add mlib.statistics.getStandardDeviation
- Add mlib.statistics.getMeasuresOfCentralTendency
- Add mlib.statistics.getMeasuresOfDispersion
1.1.0.2
====
Added:
----
- MLib.Polygon.IsPolygonInside
Removed:
----
- Removed all MLib.Shape:
- Was very slow.
- Could not define custom callbacks.
- Allow for flexibility.
Changed:
----
- Switched MLib.Line.GetIntersection back to the old way
- MLib.Line.GetSegmentIntersection now returns 4 values if the lines are parallel.
TODO:
- Make it so that MLib.Shape objects can use ':' syntax for other functions (i.e. MLib.Line.GetLength for Line objects, etc.)
- Intuitive error messages.
1.1.0.1
====
Added:
----
Removed:
----
Changed:
- MLib.Line.GetIntersection now returns true, instead of two points.
----
Fixed:
----
- MLib.Line.GetIntersection now handles vertical lines: returns true if they collide, false otherwise.
- MLib.Polygon.LineIntersects now also handles verticals.
TODO:
- Fix
- MLib.Shape Table can't have metatables.
1.1.0.0
====
Added:
----
- MLib.Polygon.IsCircleInside
- MLib.Polygon.LineSegmentIntersects
- MLib.Polygon.IsLineSegmentInside
- MLib.Statistics.GetFrequency
- MLib.Math.Factorial
- MLib.Math.SystemOfEquations
Removed:
----
Changed:
----
- MLib.Polygon.LineIntersects is now MLib.Polygon.LineSegmentIntersects.
- Put Word-wrap on Changes.txt
Fixed:
----
- Problems with numberous MLib.Polygon and MLib.Circle problems.
TODO:
- Fix
- MLib.Shape Table can't have metatables.
1.0.0.3
====
Added:
----
Removed:
----
Changed:
----
Fixed:
----
- README.md
TODO:
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
1.0.0.2
====
Added:
----
Removed:
----
- Ability to use a direction for Math.GetAngle's 5th argument instead of having a third point. See Fixed for more.
Changed:
----
- Changed README.md for clarity and consistency.
- Updated spec.lua
- See Fixed for more.
Fixed:
----
- Circle.IsSegmentSecant now properly accounts for chords actually being chords, and not secants.
- Circle.CircleIntersects now can return 'Colinear' or 'Equal' if the circles have same x and y but different radii (Colinear) or are exactly the same (Equal).
- Statistics.GetMode now returns a table with the modes, and the second argument as the number of times they appear.
- Math.GetRoot now returns the negative number as a second argument.
- Math.GetPercentOfChange now works for 0 to 0 (previously false).
- Math.GetAngle now takes only three points and no direction option.
- Typos in Shape.CheckCollisions and Shape.Remove.
- Fixed nil problems in Shape.CheckCollisions.
- Improved readablility and DRYness of Shape.CheckCollisions.
- Bugs in Shape.Remove and Shape.CheckCollisions regarding passing tables as arguments.
TODO:
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
1.0.0.1
====
Added:
----
Removed:
----
Changed:
----
- Changes.txt now expanded to include short excertps from all previous commits.
- Changed release number from 3.0.0 to 1.0.0.1
- Math.Round now can round to decimal places as the second argument.
- Commented unnecessary call of Segment.CheckPoint in Polygon.LineIntersects.
- Polygon.LineIntersects now returns where the lines intersect.
- false if not intersection.
- A table with all of the intersections { { px, py } }
- Same with Polygon.PolygonIntersects, Polygon.CircleIntersects,
Fixed:
----
- Error with GetSlope being called incorrectly.
- README.md Line.GetPerpendicularSlope misdirection.
- Same with Line.GetPerpendicularBisector, Line.Segment.GetIntersection, Circle.IsLineSecant, Circle.IsSegmentSecant, Statistics.GetMean, Median, Mode, and Range, and Shape:Remove, and fixed the naming for Shape:CheckCollisions and Shape:Remove.
- Clarified README.md
- Made util SortWithReferences local.
- Errors caused by local functions.
TODO:
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
3.0.0
-----
ADDED:
- Added function GetSignedArea.
REMOVED:
- Removed drawing functions.
- Removed MLib.Line.Functions entirely.
CHANGED:
- Changed all the names to CamelCase.
- Changed module name to MLib.
- Changed return order of GetPerpendicualrBisector from Slope, Midpoint to Midpoint, Slope.
- Changed returned string of MLib.circle.isLineSecant to be upper-case.
- Changed IsPrime to accept only one number at a time.
- Changed NewShape's type to Capitals.
Related to code:
- Added more accuarate comments.
- Made code more DRY.
- Made code monkey-patchable and saved space (by declaring all functions as local values then inserted them into a large table.
TODO:
- Make LineIntersectsPolygon return where intersection occurs.
- Ditto with PolygonIntersectsPolygon.
- Add:
- Frequency
- Binomial Probability
- Standard Deviation
- Conditional Probability
Not as accurately maintained before 2.0.2
-----------------------------------------
2.0.2
-----
- Cleaned up code, mostly.
2.0.1
-----
- Bug fixes, mlib.shape:remove & demos added.
2.0.0
-----
- Added mlib.shape and various bug fixes.
2.0.0
-----
- Made mlib.shape and made numberous bug fixes.
1.9.4
-----
- Made mlib.math.prime faster and removed ability to test multiple numbers at once. Thanks Robin!
1.9.3
-----
- Fixed polygon.area and polygon.centroid
1.9.2
-----
- Updated to LOVE 0.9.0.
1.9.1
-----
- Made mlib.line.closestPoint able to take either two points on the slope or the slope and intercept.
1.9.0
-----
- Added mlib.lineSegmentIntersects (no affiliation with previous one (changed to mlib.line.segment.intersect)) and mlib.line.closestPoint
1.8.3
-----
- Changed naming mechanism to be more organized.
1.8.2
-----
- "Fixed" mlib.lineSegmentsIntersect AGAIN!!!! :x
1.8.1
-----
- Removed a print statement.
1.8.0
-----
- mlib.pointInPolygon added
1.7.5
-----
- mlib.lineSegmentsIntersect vertical lines fixed again. This time for real. I promise... or hope, at least... :P
1.7.4
-----
- mlib.lineSegmentsIntersect vertical parallels fixed
1.7.3
-----
- mlib.lineSegmentsIntersect parallels fixed
1.7.2
-----
- mlib.lineSegmentsIntersect now handles vertical lines
1.7.1
-----
- mlib.lineSegmentsIntersect now returns the two places in between where the line segments begin to intersect.
1.7.0
-----
- Added mlib.circlesIntersect, mlib.pointOnLineSegment, mlib.linesIntersect, and mlib.lineSegmentsIntersect
1.6.1
-----
- Employed usage of summations for mlib.getPolygonArea and mlib.getPolygonCentroid and removed area as an argument for mlib.getPolygonCentroid.
1.6.0
-----
- Added several functions.
1.5.0
-----
- Made lots of changes to syntax to make it easier to use (hopefully). I also put out specs.
1.4.1
-----
- Localized mlib. Thanks, Yonaba!
1.4.0
-----
- Added mlib.getPolygonCentroid (gets the midpoint of a non-self-intersecting polygons)
1.3.2
-----
- Made mlib.getPrime take tables as arguments, so you can check all the values of a table.
1.3.1
-----
- Changed name method to mlib.getPolygonArea
1.3.0
-----
- Added mlib.get_polygon_area and removed mlib.get_convex_area and mlib.get_triangle_area since they are repetitive.
1.2.2
-----
- Made functions return faster, functions that previously returned tables now return multiple arguments.
1.2.1
-----
- Localized functions, made tables acceptable as arguments, refined function speed, mlib.get_mode now returns number most repeated as well as how many times.
1.2.0
-----
- Added mlib.get_angle
1.1.0
-----
- Added mlib.get_convex_area
1.0.4
-----
- Fixed get_mode to handle bimodials.
1.0.3
-----
- Prime Checker optimized (hopefully final update on this.)
1.0.2
-----
- Prime checker now works! (At least to 1000. I haven't tested any
further)
1.0.1
-----
- 'Fixed' the prime checker
1.0.0
-----
- Initial release

17
deps/windfield/mlib/LICENSE.md vendored Normal file
View File

@@ -0,0 +1,17 @@
Copyright (c) 2015 Davis Claiborne
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgement in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

890
deps/windfield/mlib/README.md vendored Normal file
View File

@@ -0,0 +1,890 @@
MLib
====
__MLib__ is a math and shape-intersection detection library written in Lua. It's aim is to be __robust__ and __easy to use__.
__NOTE:__
- I am (slowly) working on completely rewriting this in order to be easier to use and less bug-prone. You can check out the progress [here](../../tree/dev).
- I am currently slowing development of MLib while moving over to helping with [CPML](https://github.com/excessive/cpml). To discuss this, please comment [here](../../issues/12).
If you are looking for a library that handles updating/collision responses for you, take a look at [hxdx](https://github.com/adonaac/hxdx). It uses MLib functions as well as Box2d to handle physics calculations.
## Downloading
You can download the latest __stable__ version of MLib by downloading the latest [release](../../releases/).
You can download the latest __working__ version of MLib by downloading the latest [commit](../../commits/master/). Documentation will __only__ be updated upon releases, not upon commits.
## Implementing
To use MLib, simply place [mlib.lua](mlib.lua) inside the desired folder in your project. Then use the `require 'path.to.mlib'` to use any of the functions.
## Examples
If you don't have [LÖVE](https://love2d.org/) installed, you can download the .zip of the demo from the [Executables](Examples/Executables) folder and extract and run the .exe that way.
You can see some examples of the code in action [here](Examples).
All examples are done using the *awesome* engine of [LÖVE](https://love2d.org/).
To run them properly, download the [.love file](Examples/LOVE) and install LÖVE to your computer.
After that, make sure you set .love files to open with "love.exe".
For more, see [here](https://love2d.org/).
## When should I use MLib?
- If you need to know exactly where two objects intersect.
- If you need general mathematical equations to be done.
- If you need very precise details about point intersections.
## When should I __not__ use MLib?
- All of the objects in a platformer, or other game, for instance, should not be registered with MLib. Only ones that need very specific information.
- When you don't need precise information/odd shapes.
## Specs
#### For Windows
If you run Windows and have Telescope in `%USERPROFILE%\Documents\GitHub` (you can also manually change the path in [test.bat](test.bat)) you can simply run [test.bat](test.bat) and it will display the results, and then clean up after it's finished.
#### Default
Alternatively, you can find the tests [here](spec.lua). Keep in mind that you may need to change certain semantics to suit your OS.
You can run them via [Telescope](https://github.com/norman/telescope/) and type the following command in the command-line of the root folder:
```
tsc -f specs.lua
```
If that does not work, you made need to put a link to Lua inside of the folder for `telescope` and run the following command:
```
lua tsc -f specs.lua
```
If you encounter further errors, try to run the command line as an administrator (usually located in `C:\Windows\System32\`), then right-click on `cmd.exe` and select `Run as administrator`, then do
```
cd C:\Path\to\telescope\
```
And __then__ run one of the above commands. If none of those work, just take my word for it that all the tests pass and look at this picture.
![Success](Reference Pictures/Success.png)
## Functions
- [mlib.line](#mlibline)
- [mlib.line.checkPoint](#mliblinecheckpoint)
- [mlib.line.getClosestPoint](#mliblinegetclosestpoint)
- [mlib.line.getYIntercept](#mliblinegetintercept)
- [mlib.line.getIntersection](#mliblinegetintersection)
- [mlib.line.getLength](#mliblinegetlength)
- [mlib.line.getMidpoint](#mliblinegetmidpoint)
- [mlib.line.getPerpendicularSlope](#mliblinegetperpendicularslope)
- [mlib.line.getSegmentIntersection](#mliblinegetsegmentintersection)
- [mlib.line.getSlope](#mliblinegetslope)
- [mlib.segment](#mlibsegment)
- [mlib.segment.checkPoint](#mlibsegmentcheckpoint)
- [mlib.segment.getPerpendicularBisector](#mlibsegmentgetperpendicularbisector)
- [mlib.segment.getIntersection](#mlibsegmentgetintersection)
- [mlib.polygon](#mlibpolygon)
- [mlib.polygon.checkPoint](#mlibpolygoncheckpoint)
- [mlib.polygon.getCentroid](#mlibpolygongetcentroid)
- [mlib.polygon.getCircleIntersection](#mlibpolygongetcircleintersection)
- [mlib.polygon.getLineIntersection](#mlibpolygongetlineintersection)
- [mlib.polygon.getPolygonArea](#mlibpolygongetpolygonarea)
- [mlib.polygon.getPolygonIntersection](#mlibpolygongetpolygonintersection)
- [mlib.polygon.getSegmentIntersection](#mlibpolygongetsegmentintersection)
- [mlib.polygon.getSignedPolygonArea](#mlibpolygongetsignedpolygonarea)
- [mlib.polygon.getTriangleHeight](#mlibpolygongettriangleheight)
- [mlib.polygon.isCircleInside](#mlibpolygoniscircleinside)
- [mlib.polygon.isCircleCompletelyInside](#mlibpolygoniscirclecompletelyinside)
- [mlib.polygon.isPolygonInside](#mlibpolygonispolygoninside)
- [mlib.polygon.isPolygonCompletelyInside](#mlibpolygonispolygoncompletelyinside)
- [mlib.polygon.isSegmentInside](#mlibpolygonissegmentinside)
- [mlib.polygon.isSegmentCompletelyInside](#mlibpolygonissegmentcompletelyinside)
- [mlib.circle](#mlibcircle)
- [mlib.circle.checkPoint](#mlibcirclecheckpoint)
- [mlib.circle.getArea](#mlibcirclegetarea)
- [mlib.circle.getCircleIntersection](#mlibcirclegetcircleintersection)
- [mlib.circle.getCircumference](#mlibcirclegetcircumference)
- [mlib.circle.getLineIntersection](#mlibcirclegetlineintersection)
- [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection)
- [mlib.circle.isCircleCompletelyInside](#mlibcircleiscirclecompletelyinside)
- [mlib.circle.isCircleCompletelyInsidePolygon](#mlibcircleiscirclecompletelyinsidepolygon)
- [mlib.circle.isPointOnCircle](#mlibcircleispointoncircle)
- [mlib.circle.isPolygonCompletelyInside](#mlibcircleispolygoncompletelyinside)
- [mlib.statistics](#mlibstatistics)
- [mlib.statistics.getCentralTendency](#mlibstatisticsgetcentraltendency)
- [mlib.statistics.getDispersion](#mlibstatisticsgetdispersion)
- [mlib.statistics.getMean](#mlibstatisticsgetmean)
- [mlib.statistics.getMedian](#mlibstatisticsgetmedian)
- [mlib.statistics.getMode](#mlibstatisticsgetmode)
- [mlib.statistics.getRange](#mlibstatisticsgetrange)
- [mlib.statistics.getStandardDeviation](#mlibstatisticsgetstandarddeviation)
- [mlib.statistics.getVariance](#mlibstatisticsgetvariance)
- [mlib.statistics.getVariationRatio](#mlibstatisticsgetvariationratio)
- [mlib.math](#mlibmath)
- [mlib.math.getAngle](#mlibmathgetangle)
- [mlib.math.getPercentage](#mlibmathgetpercentage)
- [mlib.math.getPercentOfChange](#mlibmathgetpercentofchange)
- [mlib.math.getQuadraticRoots](#mlibmathgetquadraticroots)
- [mlib.math.getRoot](#mlibmathgetroot)
- [mlib.math.getSummation](#mlibmathgetsummation)
- [mlib.math.isPrime](#mlibmathisprime)
- [mlib.math.round](#mlibmathround)
- [Aliases](#aliases)
#### mlib.line
- Deals with linear aspects, such as slope and length.
##### mlib.line.checkPoint
- Checks if a point lies on a line.
- Synopsis:
- `onPoint = mlib.line.checkPoint( px, px, x1, y1, x2, y2 )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates of the line being tested.
- Returns:
- `onPoint`: Boolean.
- `true` if the point is on the line.
- `false` if it does not.
- Notes:
- You cannot use the format `mlib.line.checkPoint( px, px, slope, intercept )` because this would lead to errors on vertical lines.
##### mlib.line.getClosestPoint
- Gives the closest point to a line.
- Synopses:
- `cx, cy = mlib.line.getClosestPoint( px, py, x1, y1, x2, y2 )`
- `cx, cy = mlib.line.getClosestPoint( px, py, slope, intercept )`
- Arguments:
- `x`, `y`: Numbers. The x and y coordinates of the point.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates on the line.
- `slope`, `intercept`:
- Numbers. The slope and y-intercept of the line.
- Booleans (`false`). The slope and y-intercept of a vertical line.
- Returns:
- `cx`, `cy`: Numbers. The closest points that lie on the line to the point.
##### mlib.line.getYIntercept
- Gives y-intercept of the line.
- Synopses:
- `intercept, isVertical = mlib.line.getYIntercept( x1, y1, x2, y2 )`
- `intercept, isVertical = mlib.line.getYIntercept( x1, y1, slope )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the line.
- `slope`:
- Number. The slope of the line.
- Returns:
- `intercept`:
- Number. The y-intercept of the line.
- Number. The `x1` coordinate of the line if the line is vertical.
- `isVertical`:
- Boolean. `true` if the line is vertical, `false` if the line is not vertical.
##### mlib.line.getIntersection
- Gives the intersection of two lines.
- Synopses:
- `x, y = mlib.line.getIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )`
- `x, y = mlib.line.getIntersection( slope1, intercept1, x3, y3, x4, y4 )`
- `x, y = mlib.line.getIntersection( slope1, intercept1, slope2, intercept2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the first line.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates that lie on the second line.
- `slope1`, `intercept1`:
- Numbers. The slope and y-intercept of the first line.
- Booleans (`false`). The slope and y-intercept of the first line (if the first line is vertical).
- `slope2`, `intercept2`:
- Numbers. The slope and y-intercept of the second line.
- Booleans (`false`). The slope and y-intercept of the second line (if the second line is vertical).
- Returns:
- `x`, `y`:
- Numbers. The x and y coordinate where the lines intersect.
- Boolean:
- `true`, `nil`: The lines are collinear.
- `false`, `nil`: The lines are parallel and __not__ collinear.
##### mlib.line.getLength
- Gives the distance between two points.
- Synopsis:
- `length = mlib.line.getLength( x1, y1, x2, y2 )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `length`: Number. The distance between the two points.
##### mlib.line.getMidpoint
- Gives the midpoint of two points.
- Synopsis:
- `x, y = mlib.line.getMidpoint( x1, y1, x2, y2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `x`, `y`: Numbers. The midpoint x and y coordinates.
##### mlib.line.getPerpendicularSlope
- Gives the perpendicular slope of a line.
- Synopses:
- `perpSlope = mlib.line.getPerpendicularSlope( x1, y1, x2, y2 )`
- `perpSlope = mlib.line.getPerpendicularSlope( slope )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `slope`: Number. The slope of the line.
- Returns:
- `perpSlope`:
- Number. The perpendicular slope of the line.
- Boolean (`false`). The perpendicular slope of the line (if the original line was horizontal).
##### mlib.line.getSegmentIntersection
- Gives the intersection of a line segment and a line.
- Synopses:
- `x1, y1, x2, y2 = mlib.line.getSegmentIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )`
- `x1, y1, x2, y2 = mlib.line.getSegmentIntersection( x1, y1, x2, y2, slope, intercept )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates that lie on the line segment.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates that lie on the line.
- `slope`, `intercept`:
- Numbers. The slope and y-intercept of the the line.
- Booleans (`false`). The slope and y-intercept of the line (if the line is vertical).
- Returns:
- `x1`, `y1`, `x2`, `y2`:
- Number, Number, Number, Number.
- The points of the line segment if the line and segment are collinear.
- Number, Number, Boolean (`nil`), Boolean (`nil`).
- The coordinate of intersection if the line and segment intersect and are not collinear.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`),
- Boolean (`nil`). If the line and segment don't intersect.
##### mlib.line.getSlope
- Gives the slope of a line.
- Synopsis:
- `slope = mlib.line.getSlope( x1, y1, x2, y2 )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `slope`:
- Number. The slope of the line.
- Boolean (`false`). The slope of the line (if the line is vertical).
#### mlib.segment
- Deals with line segments.
##### mlib.segment.checkPoint
- Checks if a point lies on a line segment.
- Synopsis:
- `onSegment = mlib.segment.checkPoint( px, py, x1 y1, x2, y2 )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being checked.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `onSegment`: Boolean.
- `true` if the point lies on the line segment.
- `false` if the point does not lie on the line segment.
##### mlib.segment.getPerpendicularBisector
- Gives the perpendicular bisector of a line.
- Synopsis:
- `x, y, slope = mlib.segment.getPerpendicularBisector( x1, y1, x2, y2 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- Returns:
- `x`, `y`: Numbers. The midpoint of the line.
- `slope`:
- Number. The perpendicular slope of the line.
- Boolean (`false`). The perpendicular slope of the line (if the original line was horizontal).
##### mlib.segment.getIntersection
- Checks if two line segments intersect.
- Synopsis:
- `cx1, cy1, cx2, cy2 = mlib.segment.getIntersection( x1, y1, x2, y2, x3, y3 x4, y4 )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates of the first line segment.
- `x3`, `y3`, `x4`, `y4`: Numbers. Two x and y coordinates of the second line segment.
- Returns:
- `cx1`, `cy1`, `cx2`, `cy2`:
- Number, Number, Number, Number.
- The points of the resulting intersection if the line segments are collinear.
- Number, Number, Boolean (`nil`), Boolean (`nil`).
- The point of the resulting intersection if the line segments are not collinear.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`) , Boolean (`nil`).
- If the line segments don't intersect.
#### mlib.polygon
- Handles aspects involving polygons.
##### mlib.polygon.checkPoint
- Checks if a point is inside of a polygon.
- Synopses:
- `inPolygon = mlib.polygon.checkPoint( px, py, vertices )`
- `inPolygon = mlib.polygon.checkPoint( px, py, ... )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinate of the point being checked.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the point is inside the polygon.
- `false` if the point is not inside the polygon.
##### mlib.polygon.getCentroid
- Returns the centroid of the polygon.
- Synopses:
- `cx, cy = mlib.polygon.getCentroid( vertices )`
- `cx, cy = mlib.polygon.getCentroid( ... )`
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `cx`, `cy`: Numbers. The x and y coordinates of the centroid.
##### mlib.polygon.getCircleIntersection
- Returns the coordinates of where a circle intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getCircleIntersection( cx, cy, radius, vertices )`
- `intersections = mlib.polygon.getCircleIntersection( cx, cy, radius, ... )
- Arguments:
- `cx`, `cy`: Number. The coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections and type.
- Example:
```lua
local tab = _.polygon.getCircleIntersection( 5, 5, 1, 4, 4, 6, 4, 6, 6, 4, 6 )
for i = 1, # tab do
print( i .. ':', unpack( tab[i] ) )
end
-- 1: tangent 5 4
-- 2: tangent 6 5
-- 3: tangent 5 6
-- 4: tagnent 4 5
```
- For more see [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection) or the [specs](spec.lua# L676)
##### mlib.polygon.getLineIntersection
- Returns the coordinates of where a line intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getLineIntersection( x1, y1, x2, y2, vertices )`
- `intersections = mlib.polygon.getLineIntersection( x1, y1, x2, y2, ... )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections.
- Notes:
- With collinear lines, they are actually broken up. i.e. `{ 0, 4, 0, 0 }` would become `{ 0, 4 }, { 0, 0 }`.
##### mlib.polygon.getPolygonArea
- Gives the area of a polygon.
- Synopses:
- `area = mlib.polygon.getArea( vertices )`
- `area = mlib.polygon.getArea( ... )
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `area`: Number. The area of the polygon.
##### mlib.polygon.getPolygonIntersection
- Gives the intersection of two polygons.
- Synopsis:
- `intersections = mlib.polygon.getPolygonIntersections( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `intersections`: Table. A table of the points of intersection.
##### mlib.polygon.getSegmentIntersection
- Returns the coordinates of where a line segmeing intersects a polygon.
- Synopses:
- `intersections = mlib.polygon.getSegmentIntersection( x1, y1, x2, y2, vertices )`
- `intersections = mlib.polygon.getSegmentIntersection( x1, y1, x2, y2, ... )
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `intersections`: Table. Contains the intersections.
- Notes:
- With collinear line segments, they are __not__ broken up. See the [specs](spec.lua# L508) for more.
##### mlib.polygon.getSignedPolygonArea
- Gets the signed area of the polygon. If the points are ordered counter-clockwise the area is positive. If the points are ordered clockwise the number is negative.
- Synopses:
- `area = mlib.polygon.getLineIntersection( vertices )`
- `area = mlib.polygon.getLineIntersection( ... )
- Arguments:
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `area`: Number. The __signed__ area of the polygon. If the points are ordered counter-clockwise the area is positive. If the points are ordered clockwise the number is negative.
##### mlib.polygon.getTriangleHeight
- Gives the height of a triangle.
- Synopses:
- `height = mlib.polygon.getTriangleHeigh( base, x1, y1, x2, y2, x3, y3 )`
- `height = mlib.polygon.getTriangleHeight( base, area )`
- Arguments:
- `base`: Number. The length of the base of the triangle.
- `x1`, `y1`, `x2`, `y2`, `x3`, `y3`: Numbers. The x and y coordinates of the triangle.
- `area`: Number. The regular area of the triangle. __Not__ the signed area.
- Returns:
- `height`: Number. The height of the triangle.
##### mlib.polygon.isCircleInside
- Checks if a circle is inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is inside the polygon.
- `false` if the circle is not inside the polygon.
- Notes:
- Only returns true if the center of the circle is inside the circle.
##### mlib.polygon.isCircleCompletelyInside
- Checks if a circle is completely inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is __completely__ inside the polygon.
- `false` if the circle is not inside the polygon.
##### mlib.polygon.isPolygonInside
- Checks if a polygon is inside a polygon.
- Synopsis:
- `inPolygon = mlib.polygon.isPolygonInside( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `inPolygon`: Boolean.
- `true` if the `polygon2` is inside of `polygon1`.
- `false` if `polygon2` is not inside of `polygon2`.
- Notes:
- Returns true as long as any of the line segments of `polygon2` are inside of the `polygon1`.
##### mlib.polygon.isPolygonCompletelyInside
- Checks if a polygon is completely inside a polygon.
- Synopsis:
- `inPolygon = mlib.polygon.isPolygonCompletelyInside( polygon1, polygon2 )`
- Arguments:
- `polygon1`: Table. The vertices of the first polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `polygon2`: Table. The vertices of the second polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- Returns:
- `inPolygon`: Boolean.
- `true` if the `polygon2` is __completely__ inside of `polygon1`.
- `false` if `polygon2` is not inside of `polygon2`.
##### mlib.polygon.isSegmentInside
- Checks if a line segment is inside a polygon.
- Synopses:
- `inPolygon = mlib.polygon.isSegmentInside( x1, y1, x2, y2, vertices )`
- `inPolygon = mlib.polygon.isSegmentInside( x1, y1, x2, y2, ... )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. The x and y coordinates of the line segment.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the line segment is inside the polygon.
- `false` if the line segment is not inside the polygon.
- Note:
- Only one of the points has to be in the polygon to be considered 'inside' of the polygon.
- This is really just a faster version of [mlib.polygon.getPolygonIntersection](#mlibpolygongetpolygonintersection) that does not give the points of intersection.
##### mlib.polygon.isSegmentCompletelyInside
- Checks if a line segment is completely inside a polygon.
- Synopses:
- `inPolygon = mlib.polygon.isSegmentCompletelyInside( x1, y1, x2, y2, vertices )`
- `inPolygon = mlib.polygon.isSegmentCompletelyInside( x1, y1, x2, y2, ... )`
- Arguments:
- `x1`, `y1`, `x2`, `y2`: Numbers. The x and y coordinates of the line segment.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the line segment is __completely__ inside the polygon.
- `false` if the line segment is not inside the polygon.
#### mlib.circle
- Handles aspects involving circles.
##### mlib.circle.checkPoint
- Checks if a point is on the inside or on the edge the circle.
- Synopsis:
- `inCircle = mlib.circle.checkPoint( px, px, cx, cy, radius )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `cx`, `cy`: Numbers. The x and y coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- Returns:
- `inCircle`: Boolean.
- `true` if the point is inside or on the circle.
- `false` if the point is outside of the circle.
##### mlib.circle.getArea
- Gives the area of a circle.
- Synopsis:
- `area = mlib.circle.getArea( radius )`
- Arguments:
- `radius`: Number. The radius of the circle.
- Returns:
- `area`: Number. The area of the circle.
##### mlib.circle.getCircleIntersection
- Gives the intersections of two circles.
- Synopsis:
- `intersections = mlib.circle.getCircleIntersection( c1x, c1y, radius1, c2x, c2y, radius2 )
- Arguments:
- `c1x`, `c1y`: Numbers. The x and y coordinate of the first circle.
- `radius1`: Number. The radius of the first circle.
- `c2x`, `c2y`: Numbers. The x and y coordinate of the second circle.
- `radius2`: Number. The radius of the second circle.
- Returns:
- `intersections`: Table. A table that contains the type and where the circle collides. See the [specs](spec.lua# L698) for more.
##### mlib.circle.getCircumference
- Returns the circumference of a circle.
- Synopsis:
- `circumference = mlib.circle.getCircumference( radius )`
- Arguments:
- `radius`: Number. The radius of the circle.
- Returns:
- `circumference`: Number. The circumference of a circle.
##### mlib.circle.getLineIntersection
- Returns the intersections of a circle and a line.
- Synopsis:
- `intersections = mlib.circle.getLineIntersections( cx, cy, radius, x1, y1, x2, y2 )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `x1`, `y1`, `x2`, `y2`: Numbers. Two x and y coordinates the lie on the line.
- Returns:
- `intersections`: Table. A table with the type and where the intersections happened. Table is formatted:
- `type`, `x1`, `y1`, `x2`, `y2`
- String (`'secant'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line intersects the circle.
- String (`'tangent'`), Number, Number, Boolean (`nil`), Boolean (`nil`)
- `x1` and `x2` represent where the line intersects the circle.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`)
- No intersection.
- For more see the [specs](spec.lua# L660).
##### mlib.circle.getSegmentIntersection
- Returns the intersections of a circle and a line segment.
- Synopsis:
- `intersections = mlib.circle.getSegmentIntersections( cx, cy, radius, x1, y1, x2, y2 )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `x1`, `y1`, `x2`, `y2`: Numbers. The two x and y coordinates of the line segment.
- Returns:
- `intersections`: Table. A table with the type and where the intersections happened. Table is formatted:
- `type`, `x1`, `y1`, `x2`, `y2`
- String (`'chord'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line segment is on both edges of the circle.
- String (`'enclosed'`), Number, Number, Number, Number
- The numbers are the x and y coordinates of the line segment if it is fully inside of the circle.
- String (`'secant'`), Number, Number, Number, Number
- The numbers are the x and y coordinates where the line segment intersects the circle.
- String (`'tangent'`), Number, Number, Boolean (`nil`), Boolean (`nil`)
- `x1` and `x2` represent where the line segment intersects the circle.
- Boolean (`false`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`), Boolean (`nil`)
- No intersection.
- For more see the [specs](spec.lua# L676).
##### mlib.circle.isCircleCompletelyInside
- Checks if one circle is completely inside of another circle.
- Synopsis:
- `completelyInside = mlib.circle.isCircleCompletelyInside( c1x, c1y, c1radius, c2x, c2y, c2radius )`
- Arguments:
- `c1x`, `c1y`: Numbers. The x and y coordinates of the first circle.
- `c1radius`: Number. The radius of the first circle.
- `c2x`, `c2y`: Numbers. The x and y coordinates of the second circle.
- `c2radius`: Number. The radius of the second circle.
- Returns:
- `completelyInside`: Boolean.
- `true` if circle1 is inside of circle2.
- `false` if circle1 is not __completely__ inside of circle2.
##### mlib.circle.isCircleCompletelyInsidePolygon
- Checks if a circle is completely inside the polygon.
- Synopses:
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, vertices )`
- `inPolygon = mlib.polygon.isCircleCompletelyInside( cx, cy, radius, ... )`
- Arguments:
- `cx`, `cy`: Numbers. The x and y coordinates for the center of the circle.
- `radius`: Number. The radius of the circle.
- `vertices`: Table. The vertices of the polygon in the format `{ x1, y1, x2, y2, x3, y3, ... }`
- `...`: Numbers. The x and y coordinates of the polygon. (Same as using `unpack( vertices )`)
- Returns:
- `inPolygon`: Boolean.
- `true` if the circle is __completely__ inside the polygon.
- `false` if the circle is not inside the polygon.
##### mlib.circle.isPointOnCircle
- Checks if a point is __exactly__ on the edge of the circle.
- Synopsis:
- `onCircle = mlib.circle.checkPoint( px, px, cx, cy, radius )`
- Arguments:
- `px`, `py`: Numbers. The x and y coordinates of the point being tested.
- `cx`, `cy`: Numbers. The x and y coordinates of the center of the circle.
- `radius`: Number. The radius of the circle.
- Returns:
- `onCircle`: Boolean.
- `true` if the point is on the circle.
- `false` if the point is on the inside or outside of the circle.
- Notes:
- Will return false if the point is inside __or__ outside of the circle.
##### mlib.circle.isPolygonCompletelyInside
- Checks if a polygon is completely inside of a circle.
- Synopsis:
- `completelyInside = mlib.circle.isPolygonCompletelyInside( circleX, circleY, circleRadius, vertices )`
- `completelyInside = mlib.circle.isPolygonCompletelyInside( circleX, circleY, circleRadius, ... )`
- Arguments:
- `circleX`, `circleY`: Numbers. The x and y coordinates of the circle.
- `circleRadius`: Number. The radius of the circle.
- `vertices`: Table. A table containing all of the vertices of the polygon.
- `...`: Numbers. All of the points of the polygon.
- Returns:
- `completelyInside`: Boolean.
- `true` if the polygon is inside of the circle.
- `false` if the polygon is not __completely__ inside of the circle.
#### mlib.statistics
- Handles statistical aspects of math.
##### mlib.statistics.getCentralTendency
- Gets the central tendency of the data.
- Synopses:
- `modes, occurrences, median, mean = mlib.statistics.getCentralTendency( data )`
- `modes, occurrences, median, mean = mlib.statistics.getCentralTendency( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `modes, occurrences`: Table, Number. The modes of the data and the number of times it occurs. See [mlib.statistics.getMode](#mlibstatisticsgetmode).
- `median`: Number. The median of the data set.
- `mean`: Number. The mean of the data set.
##### mlib.statistics.getDispersion
- Gets the dispersion of the data.
- Synopses:
- `variationRatio, range, standardDeviation = mlib.statistics.getDispersion( data )`
- `variationRatio, range, standardDeviation = mlib.statistics.getDispersion( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variationRatio`: Number. The variation ratio of the data set.
- `range`: Number. The range of the data set.
- `standardDeviation`: Number. The standard deviation of the data set.
##### mlib.statistics.getMean
- Gets the arithmetic mean of the data.
- Synopses:
- `mean = mlib.statistics.getMean( data )`
- `mean = mlib.statistics.getMean( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `mean`: Number. The arithmetic mean of the data set.
##### mlib.statistics.getMedian
- Gets the median of the data set.
- Synopses:
- `median = mlib.statistics.getMedian( data )`
- `median = mlib.statistics.getMedian( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `median`: Number. The median of the data.
##### mlib.statistics.getMode
- Gets the mode of the data set.
- Synopses:
- `mode, occurrences = mlib.statistics.getMode( data )`
- `mode, occurrences = mlib.statistics.getMode( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `mode`: Table. The mode(s) of the data.
- `occurrences`: Number. The number of time the mode(s) occur.
##### mlib.statistics.getRange
- Gets the range of the data set.
- Synopses:
- `range = mlib.statistics.getRange( data )`
- `range = mlib.statistics.getRange( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `range`: Number. The range of the data.
##### mlib.statistics.getStandardDeviation
- Gets the standard deviation of the data.
- Synopses:
- `standardDeviation = mlib.statistics.getStandardDeviation( data )`
- `standardDeviation = mlib.statistics.getStandardDeviation( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `standardDeviation`: Number. The standard deviation of the data set.
##### mlib.statistics.getVariance
- Gets the variation of the data.
- Synopses:
- `variance = mlib.statistics.getVariance( data )`
- `variance = mlib.statistics.getVariance( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variance`: Number. The variation of the data set.
##### mlib.statistics.getVariationRatio
- Gets the variation ratio of the data.
- Synopses:
- `variationRatio = mlib.statistics.getVariationRatio( data )`
- `variationRatio = mlib.statistics.getVariationRatio( ... )`
- Arguments:
- `data`: Table. A table containing the values of data.
- `...`: Numbers. All of the numbers in the data set.
- Returns:
- `variationRatio`: Number. The variation ratio of the data set.
#### mlib.math
- Miscellaneous functions that have no home.
##### mlib.math.getAngle
- Gets the angle between three points.
- Synopsis:
- `angle = mlib.math.getAngle( x1, y1, x2, y2, x3, y3 )`
- Arguments:
- `x1`, `y1`: Numbers. The x and y coordinates of the first point.
- `x2`, `y2`: Numbers. The x and y coordinates of the vertex of the two points.
- `x3`, `y3`: Numbers. The x and y coordinates of the second point.
##### mlib.math.getPercentage
- Gets the percentage of a number.
- Synopsis:
- `percentage = mlib.math.getPercentage( percent, number )`
- Arguments:
- `percent`: Number. The decimal value of the percent (i.e. 100% is 1, 50% is .5).
- `number`: Number. The number to get the percentage of.
- Returns:
- `percentage`: Number. The `percent`age or `number`.
##### mlib.math.getPercentOfChange
- Gets the percent of change from one to another.
- Synopsis:
- `change = mlib.math.getPercentOfChange( old, new )`
- Arguments:
- `old`: Number. The original number.
- `new`: Number. The new number.
- Returns:
- `change`: Number. The percent of change from `old` to `new`.
##### mlib.math.getQuadraticRoots
- Gets the quadratic roots of the the equation.
- Synopsis:
- `root1, root2 = mlib.math.getQuadraticRoots( a, b, c )`
- Arguments:
- `a`, `b`, `c`: Numbers. The a, b, and c values of the equation `a * x ^ 2 + b * x ^ 2 + c`.
- Returns:
- `root1`, `root2`: Numbers. The roots of the equation (where `a * x ^ 2 + b * x ^ 2 + c = 0`).
##### mlib.math.getRoot
- Gets the `n`th root of a number.
- Synopsis:
- `x = mlib.math.getRoot( number, root )`
- Arguments:
- `number`: Number. The number to get the root of.
- `root`: Number. The root.
- Returns:
- `x`: The `root`th root of `number`.
- Example:
```lua
local a = mlib.math.getRoot( 4, 2 ) -- Same as saying 'math.pow( 4, .5 )' or 'math.sqrt( 4 )' in this case.
local b = mlib.math.getRoot( 27, 3 )
print( a, b ) --> 2, 3
```
- For more, see the [specs](spec.lua# L860).
##### mlib.math.getSummation
- Gets the summation of numbers.
- Synopsis:
- `summation = mlib.math.getSummation( start, stop, func )`
- Arguments:
- `start`: Number. The number at which to start the summation.
- `stop`: Number. The number at which to stop the summation.
- `func`: Function. The method to add the numbers.
- Arguments:
- `i`: Number. Index.
- `previous`: Table. The previous values used.
- Returns:
- `Summation`: Number. The summation of the numbers.
- For more, see the [specs](spec.lua# L897).
##### mlib.math.isPrime
- Checks if a number is prime.
- Synopsis:
- `isPrime = mlib.math.isPrime( x )`
- Arguments:
- `x`: Number. The number to check if it's prime.
- Returns:
- `isPrime`: Boolean.
- `true` if the number is prime.
- `false` if the number is not prime.
##### mlib.math.round
- Rounds a number to the given decimal place.
- Synopsis:
- `rounded = mlib.math.round( number, [place] )
- Arguments:
- `number`: Number. The number to round.
- `place (1)`: Number. The decimal place to round to. Defaults to 1.
- Returns:
- The rounded number.
- For more, see the [specs](spec.lua# L881).
#### Aliases
| Alias | Corresponding Function |
| ----------------------------------------------|:---------------------------------------------------------------------------------:|
| milb.line.getDistance | [mlib.line.getLength](#mliblinegetlength) |
| mlib.line.getCircleIntersection | [mlib.circle.getLineIntersection](#mlibcirclegetlineintersection) |
| milb.line.getPolygonIntersection | [mlib.polygon.getLineIntersection](#mlibpolygongetlineintersection) |
| mlib.line.getLineIntersection | [mlib.line.getIntersection](#mliblinegetintersection) |
| mlib.segment.getCircleIntersection | [mlib.circle.getSegmentIntersection](#mlibcirclegetsegmentintersection) |
| milb.segment.getPolygonIntersection | [mlib.pollygon.getSegmentIntersection](#mlibpollygongetsegmentintersection) |
| mlib.segment.getLineIntersection | [mlib.line.getSegmentIntersection](#mliblinegetsegmentintersection) |
| mlib.segment.getSegmentIntersection | [mlib.segment.getIntersection](#mlibsegmentgetintersection) |
| milb.segment.isSegmentCompletelyInsideCircle | [mlib.circle.isSegmentCompletelyInside](#mlibcircleissegmentcompletelyinside) |
| mlib.segment.isSegmentCompletelyInsidePolygon | [mlib.polygon.isSegmentCompletelyInside](#mlibpolygonissegmentcompletelyinside) |
| mlib.circle.getPolygonIntersection | [mlib.polygon.getCircleIntersection](#mlibpolygongetcircleintersection) |
| mlib.circle.isCircleInsidePolygon | [mlib.polygon.isCircleInside](#mlibpolygoniscircleinside) |
| mlib.circle.isCircleCompletelyInsidePolygon | [mlib.polygon.isCircleCompletelyInside](#mlibpolygoniscirclecompletelyinside) |
| mlib.polygon.isCircleCompletelyOver | [mlib.circleisPolygonCompletelyInside](#mlibcircleispolygoncompletelyinside) |
## License
A math library made in Lua
copyright (C) 2014 Davis Claiborne
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Contact me at davisclaib at gmail.com

1152
deps/windfield/mlib/mlib.lua vendored Normal file

File diff suppressed because it is too large Load Diff